Chapter 28 emtrends(model.npsexpectdemean, var = ‘EXPECT_demean’, lmer.df = “asymptotic”)

28.0.0.1 This is it

# https://stats.stackexchange.com/questions/365466/significance-of-slope-different-than-zero-in-triple-interaction-with-factors

28.0.0.2 ACCURATE: NPS ~ demean + CMC

model.npsexpectdemean <- lmer(NPSpos ~ 
                          CUE_high_gt_low*EXPECT_demean  +  EXPECT_cmc + factor(ses) +
                          (1|sub), data = demean_dropna
                    )
# CUE_high_gt_low+STIM+EXPECT_demean
sjPlot::tab_model(model.npsexpectdemean,
                  title = "Multilevel-modeling: \nlmer(NPSpos ~ CUE * STIM * EXPECT_demean + (1| sub), data = pvc)",
                  CSS = list(css.table = '+font-size: 12;'))
Multilevel-modeling: lmer(NPSpos ~ CUE * STIM * EXPECT_demean + (1| sub), data = pvc)
  NPSpos
Predictors Estimates CI p
(Intercept) 6.63 5.40 – 7.86 <0.001
CUE high gt low -0.69 -1.34 – -0.03 0.039
EXPECT demean -0.00 -0.01 – 0.01 0.648
EXPECT cmc 0.07 0.03 – 0.12 0.002
factor(ses)ses-03 0.10 -0.61 – 0.80 0.791
factor(ses)ses-04 1.13 0.44 – 1.83 0.001
CUE high gt low * EXPECT
demean
-0.02 -0.04 – 0.01 0.219
Random Effects
σ2 64.28
τ00 sub 26.96
ICC 0.30
N sub 86
Observations 3765
Marginal R2 / Conditional R2 0.038 / 0.322