Chapter 27 [fMRI] VPS ~ singletrial

author: "Heejung Jung
date: "2023-03-23"

What is the purpose of this notebook?

  • Here, I model vPS dot products as a function of cue, stimulus intensity and expectation ratings.
  • One of the findings is that low cues lead to higher VPS dotproducts in the high intensity group, and that this effect becomes non-significant across sessions.
  • 03/23/2023: For now, I’m grabbing participants that have complete data, i.e. 18 runs, all three sessions. N = 65
## [1] "/Users/h/Dropbox (Dartmouth College)/projects_dropbox/social_influence_analysis/analysis/fmri/nilearn/signature_extract/signature-VPS_sub-all_runtype-pvc_event-stimulus.tsv"

27.1 VPS ~ 3 task * 3 stimulus_intensity

Q. What does the VPS pattern look like for the three tasks?

model.alltask <-
  lmer(VPS ~ task_con_linear*stim_factor + 
         task_con_quad*stim_factor + (task|sub), data = pvc)
sjPlot::tab_model(model.alltask)
  VPS
Predictors Estimates CI p
(Intercept) 1.24 0.65 – 1.83 <0.001
task con linear -5.30 -7.15 – -3.46 <0.001
stim factor [low] 0.29 -0.01 – 0.59 0.056
stim factor [med] 0.23 -0.07 – 0.53 0.136
task con quad -2.11 -3.90 – -0.32 0.021
task con linear * stim
factor [low]
-0.59 -2.02 – 0.84 0.421
task con linear * stim
factor [med]
-1.54 -2.98 – -0.11 0.035
stim factor [low] * task
con quad
2.61 1.36 – 3.87 <0.001
stim factor [med] * task
con quad
2.21 0.96 – 3.46 0.001
Random Effects
σ2 74.67
τ00 sub 16.59
τ11 sub.taskpain 35.89
τ11 sub.taskvicarious 16.74
ρ01 -0.51
-0.68
ICC 0.18
N sub 111
Observations 19428
Marginal R2 / Conditional R2 0.072 / 0.241

eta-squared

Parameter Eta2_partial CI CI_low CI_high
task_con_linear 0.3266266 0.95 0.2104200 1
stim_factor 0.0002117 0.95 0.0000000 1
task_con_quad 0.0034213 0.95 0.0000000 1
task_con_linear:stim_factor 0.0002379 0.95 0.0000000 1
stim_factor:task_con_quad 0.0010135 0.95 0.0003561 1

Cohen’s d

t df d
task_con_linear -5.6291153 164.6488 -0.8773863
stim_factorlow 1.9136684 19090.4418 0.0277006
stim_factormed 1.4905241 19090.4418 0.0215755
task_con_quad -2.3069934 148.6413 -0.3784483
task_con_linear:stim_factorlow -0.8050546 19090.4422 -0.0116533
task_con_linear:stim_factormed -2.1116090 19090.4422 -0.0305658
stim_factorlow:task_con_quad 4.0883679 19090.4422 0.0591796
stim_factormed:task_con_quad 3.4549197 19090.4422 0.0500104

27.2 VPS ~ vicarious task: 2 cue x 3 stimulus_intensity

Q. Within vicarious task, Does stimulus intenisty level and cue level significantly predict VPS dotproducts?

27.2.1 Linear model ver 1: VPS ~ stimulus_intensity

model.vpsstim <- lmer(VPS ~ stim_con_linear + stim_con_quad +(stim_con_linear + stim_con_quad |sub), data = data_screen)
sjPlot::tab_model(model.vpsstim)
  VPS
Predictors Estimates CI p
(Intercept) 1.54 0.83 – 2.25 <0.001
stim con linear 0.39 -0.18 – 0.95 0.180
stim con quad -0.23 -0.72 – 0.27 0.370
Random Effects
σ2 55.74
τ00 sub 12.05
τ11 sub.stim_con_linear 0.65
τ11 sub.stim_con_quad 0.44
ρ01 0.56
-0.18
N sub 104
Observations 4420
Marginal R2 / Conditional R2 0.001 / NA

27.2.1.1 Linear model ver 1: eta-squared

Parameter Eta2_partial CI CI_low CI_high
stim_con_linear 0.0112309 0.95 0 1
stim_con_quad 0.0054742 0.95 0 1

Linear model ver 1: Cohen’s d VPS stimulus intensity = 0.213

t df d
stim_con_linear 1.3395560 157.9802 0.2131521
stim_con_quad -0.8965857 146.0413 -0.1483829

27.2.2 Linear model ver 2: VPS ~ stimulus_intenisy * cue

model.vpscuestim <- lmer(VPS ~ cue_con*stim_con_linear + cue_con*stim_con_quad + (cue_con+stim_factor|sub), data = data_screen)
sjPlot::tab_model(model.vpscuestim)
  VPS
Predictors Estimates CI p
(Intercept) 1.54 0.83 – 2.25 <0.001
cue con 0.08 -0.36 – 0.53 0.709
stim con linear 0.39 -0.18 – 0.95 0.179
stim con quad -0.23 -0.72 – 0.27 0.369
cue con * stim con linear 0.03 -1.05 – 1.10 0.961
cue con * stim con quad -0.09 -1.03 – 0.86 0.858
Random Effects
σ2 55.78
τ00 sub 14.25
τ11 sub.cue_con 0.02
τ11 sub.stim_factorlow 0.66
τ11 sub.stim_factormed 1.08
ρ01 0.97
-0.67
-0.47
N sub 104
Observations 4420
Marginal R2 / Conditional R2 0.001 / NA

Linear model ver 2: eta-squared

Parameter Eta2_partial CI CI_low CI_high
cue_con 0.0000478 0.95 0 1
stim_con_linear 0.0116418 0.95 0 1
stim_con_quad 0.0057814 0.95 0 1
cue_con:stim_con_linear 0.0000006 0.95 0 1
cue_con:stim_con_quad 0.0000076 0.95 0 1

Cohen’s d: VPS stimulus intensity d = 0.217, cue level d = 0.013

t df d
cue_con 0.3735172 2920.3096 0.0138238
stim_con_linear 1.3445086 153.4694 0.2170614
stim_con_quad -0.8976592 138.5715 -0.1525122
cue_con:stim_con_linear 0.0484256 4231.8238 0.0014888
cue_con:stim_con_quad -0.1789583 4233.5751 -0.0055008

Lineplots

27.2.3 2 Cue x 3 Stimulus intensity x Expectation rating

model.vps3factor <- lmer(VPS ~ cue_con*stim_con_linear*event02_expect_angle + cue_con*stim_con_quad*event02_expect_angle + (cue_con|sub), data = data_screen)
sjPlot::tab_model(model.vps3factor)
  VPS
Predictors Estimates CI p
(Intercept) 1.24 0.40 – 2.08 0.004
cue con -0.15 -1.09 – 0.80 0.758
stim con linear 0.32 -0.77 – 1.41 0.564
event02 expect angle 0.01 -0.00 – 0.03 0.158
stim con quad -0.14 -1.09 – 0.82 0.781
cue con * stim con linear 0.33 -1.85 – 2.51 0.768
cue con * event02 expect
angle
-0.00 -0.03 – 0.03 0.839
stim con linear * event02
expect angle
0.01 -0.02 – 0.04 0.624
cue con * stim con quad 0.33 -1.58 – 2.24 0.738
event02 expect angle *
stim con quad
-0.01 -0.03 – 0.02 0.707
(cue con * stim con
linear) * event02 expect
angle
-0.02 -0.09 – 0.05 0.544
(cue con * event02 expect
angle) * stim con quad
0.00 -0.05 – 0.06 0.990
Random Effects
σ2 56.38
τ00 sub 12.03
τ11 sub.cue_con 0.02
ρ01 sub 1.00
N sub 104
Observations 4230
Marginal R2 / Conditional R2 0.002 / NA
kableExtra::kable_styling(
  knitr::kable(
    eta_squared(model.vps3factor, partial = TRUE), # MODIFY
    "html"), "striped", position = "left", font_size = 12)
Parameter Eta2_partial CI CI_low CI_high
cue_con 0.0000281 0.95 0 1
stim_con_linear 0.0000805 0.95 0 1
event02_expect_angle 0.0005784 0.95 0 1
stim_con_quad 0.0000187 0.95 0 1
cue_con:stim_con_linear 0.0000210 0.95 0 1
cue_con:event02_expect_angle 0.0000121 0.95 0 1
stim_con_linear:event02_expect_angle 0.0000582 0.95 0 1
cue_con:stim_con_quad 0.0000271 0.95 0 1
event02_expect_angle:stim_con_quad 0.0000342 0.95 0 1
cue_con:stim_con_linear:event02_expect_angle 0.0000892 0.95 0 1
cue_con:event02_expect_angle:stim_con_quad 0.0000000 0.95 0 1
kableExtra::kable_styling(
  knitr::kable(
    lme.dscore(model.vps3factor, data_screen, type = "lme4"), # MODIFY
    "html"), "striped", position = "left", font_size = 12)
t df d
cue_con -0.3079865 3375.733 -0.0106017
stim_con_linear 0.5762780 4122.869 0.0179499
event02_expect_angle 1.4107477 3438.911 0.0481137
stim_con_quad -0.2776990 4120.037 -0.0086527
cue_con:stim_con_linear 0.2945420 4124.835 0.0091722
cue_con:event02_expect_angle -0.2038101 3432.844 -0.0069571
stim_con_linear:event02_expect_angle 0.4897779 4124.654 0.0152523
cue_con:stim_con_quad 0.3339531 4120.459 0.0104050
event02_expect_angle:stim_con_quad -0.3755729 4121.327 -0.0117005
cue_con:stim_con_linear:event02_expect_angle -0.6068106 4126.822 -0.0188919
cue_con:event02_expect_angle:stim_con_quad 0.0120689 4121.074 0.0003760

27.3 VPS ~ session * cue * stimulus_intensity

Q. Is the cue effect on VPS different across sessions?

Quick answer: Yes, the cue effect in session 1 (for high intensity group) is significantly different; the dirrection flips in session 3; whereas this different becomes non significant in session 4.

Session 1: 2 cue * 3 stimulus_intensity

Session 3: 2 cue * 3 stimulus_intensity

Session 4: 2 cue * 3 stimulus_intensity


27.4 VPS ~ outcome_rating

Q. Do higher VPS values indicate higher outcome ratings? (Vicarious task only)

Yes, Higher VPS values are associated with higher outcome ratings. The pattern is slightly different from the NPS plots, when separated out into three panels of stimulus intensity levels. Neeed to ponder on these results

27.4.1 outcome_ratings * cue

27.4.2 outcome_ratings * stimulus_intensity * cue


27.5 VPS ~ expectation_rating

Q. What is the relationship betweeen expectation ratings & VPS? (Vicarious task only)

Do we see a linear effect between expectation rating and VPS dot products? Also, does this effect differ as a function of cue and stimulus intensity ratings, as is the case for behavioral ratings?

Quick answer: Kind of, expectation ratings predict VPS dotproducts; almost only in the low cue conditions across all stimulus intensity levels.