Chapter 4 [ beh ] outcome ~ cue
What is the purpose of this notebook?
Here, I plot the outcome ratings as a function of cue.
* Main model: lmer(outcome_rating ~ cue)
* Main question: do outcome ratings differ as a function of cue type?
* If there is a main effect of cue on outcome ratings, does this cue effect differ depending on task type?
* IV: cue (high / low)
* DV: outcome rating
FIX: plot statistics in random effect plot - what is broken?
# parameters _____________________________________ # nolint
<- "src_subject_id"
subject_varkey <- "param_cue_type"; iv_keyword <- "cue"; dv <- "event04_actual_angle"; dv_keyword <- "outcome"
iv <- ""; ylim = c(0,180); ylab <- "ratings (degree)"
xlab <- "subject"
subject <- "sub-0001|sub-0003|sub-0004|sub-0005|sub-0025|sub-0999"
exclude <- "mean_per_sub"; group_mean <- "mean_per_sub_norm_mean"; se <- "se"
subjectwise_mean <- if (any(startsWith(dv_keyword, c("expect", "Expect")))) {
color_scheme <- c("#1B9E77", "#D95F02")
color_scheme else {
} <- c("#4575B4", "#D73027")
color_scheme
}<- FALSE
print_lmer_output <- " - Outcome Rating (degree)"
ggtitle_phrase <- file.path(main_dir, "analysis", "mixedeffect", "model02_iv-cue_dv-outcome", as.character(Sys.Date()))
analysis_dir dir.create(analysis_dir, showWarnings = FALSE, recursive = TRUE)
4.4 Individual differences analysis: random cue effects
Using the random effects from the mixed effects model, I’m plotting the random effect of cue types per task.
[ INSERT DESCRIPTION ]
Note:
* Pain: Warning: Removed 2 rows containing non-finite values (stat_cor()
).
* Vicarious: Warning: Removed 1 rows containing non-finite values (stat_cor()
).
* Cognitive: Warning: Removed 2 rows containing non-finite values (stat_cor()
).
4.5 Individual differences analysis 2: random intercept + random slopes of cue effect
based on Tor’s suggestion, plotting the random efects with the random intercepts as well. not just the cue effects
Note:
* Pain: Warning: Removed 49 rows containing non-finite values (stat_cor()
).
* Vicarious: Removed 8 rows containing non-finite values (stat_cor()
).
* Cognitive: Removed 52 rows containing non-finite values (stat_cor()
).