5 beh :: outcome ~ cue * stim

What is the purpose of this notebook?

Here, I plot the outcome ratings as a function of cue and stimulus intensity.

  • Main model: lmer(outcome_rating ~ cue * stim)
  • Main question: do outcome ratings differ as a function of cue type and stimulus intensity?
  • If there is a main effect of cue on outcome ratings, does this cue effect differ depending on task type?
  • Is there an interaction between the two factors?
  • IV:
    • cue (high / low)
    • stim (high / med / low)
  • DV: outcome rating

5.1 Cue contrasts

lmer(Outcome ~ Cue_contrast)

  • IV: Stim X Cue_contrast
  • DV: Outcome rating

5.2 TODO: model 03 3-2. individual differences

5.2.1 DELETE AFTER SANDBOX

5.3 Cue X Stim Raincloud plots

  • IV: Cue x stim
  • DV: Outcome rating
## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name              grob
## 1 1 (1-1,1-1) arrange    gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[guide-box]
## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name              grob
## 1 1 (1-1,1-1) arrange    gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[guide-box]
## TableGrob (1 x 2) "arrange": 2 grobs
##   z     cells    name              grob
## 1 1 (1-1,1-1) arrange    gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[guide-box]

5.3.1 Cue X Stim linear model

    # stim_con1 <- "STIM_linear"
    # stim_con2 <- "STIM_quadratic"
    # iv1 <- "CUE_high_gt_low"
    # dv <- "OUTCOME"


library(Matrix)
library(glmmTMB)
## Warning in checkDepPackageVersion(dep_pkg = "TMB"): Package version inconsistency detected.
## glmmTMB was built with TMB version 1.9.6
## Current TMB version is 1.9.10
## Please re-install glmmTMB from source or restore original 'TMB' package (see '?reinstalling' for more information)
library(TMB)
library(RcppEigen)

df <- data[!is.na(data$OUTCOME), ]

fullmodel <-
  lmer(
    OUTCOME ~ CUE_high_gt_low * STIM_linear + (
      CUE_high_gt_low * STIM_linear  |
        subject
    ),
    data = df

  )
## boundary (singular) fit: see help('isSingular')
# TODO:: troubleshoot
# m <- glmmTMB(OUTCOME ~ CUE_high_gt_low * STIM_linear + ( CUE_high_gt_low * STIM_linear  | subject),
#              data = df,
#              control = glmmTMBControl(rank_check = "adjust"))
#              #start = start_values,
#
# summary(m)

sjPlot::tab_model(fullmodel,
                  title = "Multilevel-modeling: \nlmer(OUTCOME ~ CUE * STIM + (CUE * STIM | sub), data = pvc)",
                  CSS = list(css.table = '+font-size: 12;'))
Multilevel-modeling: lmer(OUTCOME ~ CUE * STIM + (CUE * STIM | sub), data = pvc)
  OUTCOME
Predictors Estimates CI p
(Intercept) 28.40 25.98 – 30.82 <0.001
CUE high gt low 8.06 6.69 – 9.44 <0.001
STIM linear 8.16 6.86 – 9.46 <0.001
CUE high gt low × STIM
linear
2.60 0.29 – 4.91 0.027
Random Effects
σ2 352.77
τ00subject 160.46
τ11subject.CUE_high_gt_low 27.66
τ11subject.STIM_linear 10.75
τ11subject.CUE_high_gt_low:STIM_linear 3.11
ρ01 0.37
0.61
-0.28
N subject 110
Observations 6220
Marginal R2 / Conditional R2 0.073 / NA

5.4 Individual differences in cue effects

5.5 Cue X Stim Lineplot

Instead of the rain cloud plots, here, I plot the lines and confidence interval for each cue x stim combination. Plotted per task.

5.6 Clinical trials

5.7 cue contrast average across intensity

## [1] "pain"
## [1] 8.203947
## [1] 0.8871599
## [1] "high vs. low cue"
## [1] "low"              "61.6884121864272" "2.860880140792"  
## [1] "high"             "70.2234946843967" "2.85365310068339"
## [1] "vicarious"
## [1] 7.69279
## [1] 0.6584873
## [1] "high vs. low cue"
## [1] "low"              "22.7808026788692" "1.0440409512757" 
## [1] "high"             "30.636407755966"  "1.20480098494488"
## [1] "cognitive"
## [1] 8.019356
## [1] 0.7038933
## [1] "high vs. low cue"
## [1] "low"              "24.308987672219"  "1.19373008209444"
## [1] "high"             "32.34623546235"   "1.37653031156445"

5.8 cue contrast average across expectation

## [1] "pain"
## [1] 35.05694
## [1] 1.989724
## [1] "high vs. low cue"
## [1] "low"              "44.6580941421071" "3.02430373086043"
## [1] "high"             "79.4644108331637" "2.85584321656255"
## [1] "vicarious"
## [1] 33.25123
## [1] 1.503149
## [1] "high vs. low cue"
## [1] "low"              "14.9314711535258" "1.00860750130232"
## [1] "high"             "48.146271174259"  "1.54236667339445"
## [1] "cognitive"
## [1] 30.7638
## [1] 1.53046
## [1] "high vs. low cue"
## [1] "low"              "18.5956241315907" "1.20836045474955"
## [1] "high"             "49.3940294143433" "1.73640570707356"